skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hiramatsu, Daichi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present deep James Webb Space Telescope near-infrared imaging to search for a quiescent or transient counterpart to FRB 20250316A, which was precisely localized with the CHIME Outriggers array to an area of 11 × 13 pc in the outer regions of NGC 4141 atd≈ 40 Mpc. Our F150W2 image reveals a faint source near the center of the fast radio burst (FRB) localization region (“NIR-1”;MF150W2≈ −2.5 mag; probability of chance coincidence ≈0.36), the only source within ≈2.7σ. We find that it is too faint to be a globular cluster, a young star cluster, a red supergiant star, or a giant star near the tip of the red giant branch (RGB). It is instead consistent with a red giant near the RGB “clump” or a massive (≳20M) main-sequence star, although the latter explanation is less likely. The source is too bright to be a supernova (SN) remnant, Crab-like pulsar wind nebula, or isolated magnetar. Alternatively, NIR-1 may represent transient emission, namely a dust echo from an energetic outburst associated with the FRB, in which case we would expect it to fade in future observations. We explore the stellar population near the FRB and find that it is composed of a mix of young massive stars (∼10–100 Myr) in a nearby Hiiregion that extends to the location of FRB 20250316A and old evolved stars (≳Gyr). The overlap with a young stellar population, containing stars of up to ≈20M, may implicate a neutron star/magnetar produced in the core collapse of a massive star as the source of FRB 20250316A. 
    more » « less
    Free, publicly-accessible full text available August 20, 2026
  2. Abstract We present a detailed study of SN 2024ahr, a hydrogen-poor superluminous supernova (SLSN-I), for which we determine a redshift ofz= 0.0861. SN 2024ahr has a peak absolute magnitude ofMg≈Mr≈ −21 mag, rest-frame rise and decline times (50% of peak) of about 40 and 80 days, respectively, and typical spectroscopic evolution in the optical band. Similarly, modeling of the UV/optical light curves with a magnetar spin-down engine leads to typical parameters: an initial spin period of ≈3.3 ms, a magnetic field strength of ≈6 × 1013G, and an ejecta mass of ≈9.5M. Due to its relatively low redshift, we obtained a high signal-to-noise ratio near-IR (NIR) spectrum about 43 rest-frame days postpeak to search for the presence of helium. We do not detect any significant feature at the location of the Heiλ2.058μm feature and place a conservative upper limit of ∼0.05Mon the mass of helium in the outer ejecta. We detect broad features of Mgiλ1.575μm and Mgiiλ2.136μm, which are typical of Type Ic SNe, but with higher velocities. Examining the sample of SLSNe-I with NIR spectroscopy, we find that, unlike SN 2024ahr, these events are generally peculiar. This highlights the need for a large sample of prototypical SLSNe-I with NIR spectroscopy to constrain the fraction of progenitors with helium (Ib-like) and without helium (Ic-like) at the time of explosion, and hence the evolutionary path(s) leading to the rare outcome of SLSNe-I. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  3. Abstract While the subclass of interacting supernovae (SNe) with narrow hydrogen emission lines (Type IIn supernovae (SNe IIn)) consists of some of the longest-lasting and brightest supernovae (SNe) ever discovered, their progenitors are still not well understood. Investigating SNe IIn as they emit across the electromagnetic spectrum is the most robust way to understand the progenitor evolution before the explosion. This work presents X-ray, optical, infrared, and radio observations of the strongly interacting Type IIn supernova, SN 2020ywx, covering a period >1200 days after discovery. Through multiwavelength modeling, we find that the progenitor of 2020ywx was losing mass at ∼10−2–10−3Myr−1for at least 100 yr pre-explosion using the circumstellar medium (CSM) speed of 120 km s−1measured from optical and near-infrared (NIR) spectra. Despite the similar magnitude of mass loss measured in different wavelength ranges, we find discrepancies between the X-ray and optical/radio-derived mass-loss evolution, which suggest asymmetries in the CSM. Furthermore, we find evidence for dust formation due to the combination of a growing blueshift in optical emission lines and NIR continuum emission which we fit with blackbodies at ∼1000 K. Based on the observed elevated mass loss over more than 100 yr and the configuration of the CSM inferred from the multiwavelength observations, we invoke binary interaction as the most plausible mechanism to explain the overall mass-loss evolution. SN 2020ywx is thus a case that may support the growing observational consensus that SNe IIn mass loss is explained by binary interaction. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  4. We present an optical photometric and spectroscopic analysis of the fast-declining hydrogen-rich Type II supernova (SN) 2019nyk. The light curve properties of SN 2019nyk align well with those of other fast-declining Type II SNe, such as SNe 2013by and 2014G. SN 2019nyk exhibits a peak absolute magnitude of −18.09 ± 0.17 mag in theVband, followed by a rapid decline at 2.84  ±  0.03 mag (100 d)−1during the recombination phase. The early spectra of SN 2019nyk exhibit high-ionisation emission features as well as narrow H Balmer lines, persisting until 4.1 d since explosion, indicating the presence of circumstellar material (CSM) in close proximity. A comparison of these features with other Type II SNe displaying an early interaction reveals similarities between these features and those observed in SNe 2014G and 2023ixf. We also compared the early spectra to literature models, estimating a mass-loss rate of the order of 10−3Myr−1. Radiation hydrodynamical modelling of the light curve also suggests the mass loss from the progenitor within a short period prior to explosion, totalling 0.16Mof material within 2900Rof the progenitor. Furthermore, light curve modelling infers a zero-age main sequence mass of 15Mfor the progenitor, a progenitor radius of 1031R, and an explosion energy of 1.1 × 1051erg. 
    more » « less
  5. ABSTRACT Hydrogen-poor superluminous supernovae (SLSNe) are among the most energetic explosions in the universe, reaching luminosities up to 100 times greater than those of normal supernovae. This paper presents the largest compilation of SLSN photospheric spectra to date, encompassing data from the advanced Public ESO Spectroscopic Survey of Transient Objects (ePESSTO+), the Finding Luminous and Exotic Extragalactic Transients (FLEET) search, and all published spectra up to December 2022. The data set includes a total of 974 spectra of 234 SLSNe. By constructing average phase binned spectra, we find SLSNe initially exhibit high temperatures (10 000–11 000 K), with blue continua and weak lines. A rapid transformation follows, as temperatures drop to 5000–6000 K by 40 d post-peak, leading to stronger P-Cygni features. Variance within the data set is slightly reduced when defining the phase of spectra relative to explosion, rather than peak, and normalising to the population’s median e-folding decline time. Principal Component Analysis (PCA) supports this, requiring fewer components to explain the same level of variation when binning data by scaled days from explosion, suggesting a more homogeneous grouping. Using PCA and K-means clustering, we identify outlying objects with unusual spectroscopic evolution and evidence for energy input from interaction, but find no support for groupings of two or more statistically significant subpopulations. We find Fe ii  $$\lambda$$5169 line velocities closely track the radius implied from blackbody fits, indicating formation near the photosphere. We also confirm a correlation between velocity and velocity gradient, which can be explained if all SLSNe are in homologous expansion but with different scale velocities. This behaviour aligns with expectations for an internal powering mechanism. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026
  6. Abstract We present supernova (SN) 2023ufx, a unique Type IIP SN with the shortest known plateau duration (tPT∼ 47 days), a luminousV-band peak (MV= −​​​​​​18.42 ± 0.08 mag), and a rapid early decline rate (s1 = 3.47 ± 0.09 mag (50 days)−1). By comparing observed photometry to a hydrodynamic MESA+STELLA model grid, we constrain the progenitor to be a massive red supergiant withMZAMS∼ 19–25M. Independent comparisons with nebular spectral models also suggest an initial He-core mass of ∼6M, and thus a massive progenitor. For a Type IIP, SN 2023ufx produced an unusually high amount of nickel (56Ni) ∼0.14 ± 0.02M, during the explosion. We find that the short plateau duration in SN 2023ufx can be explained with the presence of a small hydrogen envelope ( M H env ∼ 1.2M), suggesting partial stripping of the progenitor. About ∼0.09Mof circumstellar material through mass loss from late-time stellar evolution of the progenitor is needed to fit the early time (≲10 days) pseudo-bolometric light curve. Nebular line diagnostics of broad and multipeak components of [Oi]λλ6300, 6364, Hα, and [Caii]λλ7291, 7323 suggest that the explosion of SN 2023ufx could be inherently asymmetric, preferentially ejecting material along our line of sight. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  7. Abstract We present optical photometry and spectroscopy of the Type IIn supernova (SN) 2021qqp. Its unusual light curve is marked by a long precursor for ≈300 days, a rapid increase in brightness for ≈60 days, and then a sharp increase of ≈1.6 mag in only a few days to a first peak ofMr≈ −19.5 mag. The light curve then declines rapidly until it rebrightens to a second distinct peak ofMr≈ −17.3 mag centered at ≈335 days after the first peak. The spectra are dominated by Balmer lines with a complex morphology, including a narrow component with a width of ≈1300 km s−1(first peak) and ≈2500 km s−1(second peak) that we associate with the circumstellar medium (CSM) and a P Cygni component with an absorption velocity of ≈8500 km s−1(first peak) and ≈5600 km s−1(second peak) that we associate with the SN–CSM interaction shell. Using the luminosity and velocity evolution, we construct a flexible analytical model, finding two significant mass-loss episodes with peak mass loss rates of ≈10 and ≈5Myr−1about 0.8 and 2 yr before explosion, respectively, with a total CSM mass of ≈2–4M. We show that the most recent mass-loss episode could explain the precursor for the year preceding the explosion. The SN ejecta mass is constrained to be ≈5–30Mfor an explosion energy of ≈(3–10) × 1051erg. We discuss eruptive massive stars (luminous blue variable, pulsational pair instability) and an extreme stellar merger with a compact object as possible progenitor channels. 
    more » « less
  8. Abstract We present panchromatic optical + near-infrared (NIR) + mid-infrared (MIR) observations of the intermediate-luminosity Type Iax supernova (SN Iax) 2024pxl and the extremely low-luminosity SN Iax 2024vjm. JWST observations provide unprecedented MIR spectroscopy of SN Iax, spanning from +11 to +42 day past maximum light. We detect forbidden emission lines in the MIR at these early times while the optical and NIR are dominated by permitted lines with an absorption component. Panchromatic spectra at early times can thus simultaneously show nebular and photospheric lines, probing both inner and outer layers of the ejecta. We identify spectral lines not seen before in SN Iax, including [Mgii] 4.76μm, [Mgii] 9.71μm, [Neii] 12.81μm, and isolated Oi2.76μm that traces unburned material. Forbidden emission lines of all species are centrally peaked with similar kinematic distributions, indicating that the ejecta are well mixed in both SN 2024pxl and SN 2024vjm, a hallmark of pure deflagration explosion models. Radiative transfer modeling of SN 2024pxl shows good agreement with a weak deflagration of a near-Chandrasekhar-mass white dwarf, but additional IR flux is needed to match the observations, potentially attributable to a surviving remnant. Similarly, we find SN 2024vjm is also best explained by a weak deflagration model, despite the large difference in luminosity between the two supernovae. Future modeling should push to even weaker explosions and include the contribution of a bound remnant. Our observations demonstrate the diagnostic power of panchromatic spectroscopy for unveiling explosion physics in thermonuclear supernovae. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026
  9. Abstract We present optical observations and analysis of the bright type Iax supernova SN 2020udy hosted by NGC 0812. The evolution of the light curve of SN 2020udy is similar to that of other bright type Iax SNe. Analytical modeling of the quasi-bolometric light curves of SN 2020udy suggests that 0.08 ± 0.01Mof56Ni would have been synthesized during the explosion. The spectral features of SN 2020udy are similar to those of the bright members of type Iax class, showing a weak Siiiline. The late-time spectral sequence is mostly dominated by iron group elements with broad emission lines. Abundance tomography modeling of the spectral time series of SN 2020udy usingTARDISindicates stratification in the outer ejecta; however, to confirm this, spectral modeling at a very early phase is required. After maximum light, uniform mixing of chemical elements is sufficient to explain the spectral evolution. Unlike in the case of normal type Ia SNe, the photospheric approximation remains robust until +100 days, requiring an additional continuum source. Overall, the observational features of SN 2020udy are consistent with the deflagration of a carbon–oxygen white dwarf. 
    more » « less
  10. Abstract We present 1.3 mm (230 GHz) observations of the recent and nearby Type II supernova, SN 2023ixf, obtained with the Submillimeter Array (SMA) at 2.6–18.6 days after explosion. The observations were obtained as part the SMA Large Program, POETS (Pursuit of Extragalactic Transients with the SMA). We do not detect any emission at the location of SN 2023ixf, with the deepest limits of L ν (230 GHz) ≲ 8.6 × 10 25 erg s −1 Hz −1 at 2.7 and 7.7 days, and L ν (230 GHz) ≲ 3.4 × 10 25 erg s −1 Hz −1 at 18.6 days. These limits are about a factor of 2 times dimmer than the millimeter emission from SN 2011dh (IIb), about 1 order of magnitude dimmer compared to SN 1993J (IIb) and SN 2018ivc (IIL), and about 30 times dimmer than the most luminous nonrelativistic SNe in the millimeter band (Type IIb/Ib/Ic). Using these limits in the context of analytical models that include synchrotron self-absorption and free–free absorption, we place constraints on the proximate circumstellar medium around the progenitor star, to a scale of ∼2 × 10 15 cm, excluding the range M ̇ ∼ few × 10 − 6 − 10 − 2 M ⊙ yr −1 (for a wind velocity, v w = 115 km s −1 , and ejecta velocity, v ej ∼ (1 − 2) × 10 4 km s −1 ). These results are consistent with an inference of the mass-loss rate based on optical spectroscopy (∼2 × 10 −2 M ⊙ yr −1 for v w = 115 km s −1 ), but are in tension with the inference from hard X-rays (∼7 × 10 −4 M ⊙ yr −1 for v w = 115 km s −1 ). This tension may be alleviated by a nonhomogeneous and confined CSM, consistent with results from high-resolution optical spectroscopy. 
    more » « less